It was always a mystery to me why in Calculus we stopped learning the fun geometrical stuff like curves, areas and volumes and all of a sudden started learning about series. The professor never mentioned why this topic was necessary. So much for context. He also couldn't teach series very well, and I had to take the class over during the summer to graduate.
I dare you to ask your math teacher what series have to do with Calculus. "Well, they're on the AP exam," is the response you're likely to get, and that's true, too. But the real reason is that polynomials are child's play to differentiate and integrate, and many other functions are not. In Visual Complex Analysis, Professor Tristan Needham of USF writes that
Newton's 1665 version of the calculus was different from the one we learn today: its essence was the manipulation of decimal expansions in arithmetic. The symbolic calculus...was also perfectly familiar to Newton, but apparently it was of only incidental interest to him. After all, armed with his power series, Newton could evaluate an integral like ∫ e-x2dx just as easily as ∫ sin x dx. Let Leibniz try that!That very integral (∫ e-x2dx) stumps most calculators, and I assume most students as well. But in the Series module participants in The Fun Calculus Program learn how to derive the series for ex, and simply substitute -x2 for x.
Personally, I love how Calculus tools evolved to make easy work of previously unsolvable problems, and series fit right into that toolbox.
No comments:
Post a Comment